PART 1 - GENERAL

1.1 SUMMARY
 A. This Section includes gravity-flow, nonpressure sanitary sewerage outside the building, with the following components:
 1. Cleanouts.
 2. Precast concrete manholes.

1.2 PERFORMANCE REQUIREMENTS
 A. Gravity-Flow, Nonpressure, Drainage-Piping Pressure Rating: 10-foot head of water.

1.3 SUBMITTALS
 A. Shop Drawings: For manholes. Include plans, elevations, sections, details, and frames and covers.
 B. Coordination Drawings: Show pipe sizes, locations, and elevations.
 C. Field quality-control test reports.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS
 A. Refer to Part 3 "Piping Applications" Article for applications of pipe, fitting, and joining materials.

2.2 PVC PIPE AND FITTINGS

2.3 NONPRESSURE-TYPE PIPE COUPLINGS
 A. Comply with ASTM C 1173, elastomeric, sleeve-type, reducing or transition coupling, for joining underground nonpressure piping. Include ends of same sizes as piping to be joined and corrosion-resistant-metal tension band and tightening mechanism on each end.
B. Sleeve Materials:

1. For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
2. For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.

2.4 CLEANOUTS

A. Gray-Iron Cleanouts: ASME A112.36.2M, round, gray-iron housing with clamping device and round, secured, scoriated, gray-iron cover. Include gray-iron ferrule with inside calk or spigot connection and countersunk, tapered-thread, brass closure plug.

1. Manufacturers:
 b. MIFAB Manufacturing Inc.
 d. Wade Div.; Tyler Pipe.
 e. Watts Industries, Inc.
 g. Zurn Specification Drainage Operation; Zurn Plumbing Products Group.

2. Top-Loading Classification: Heavy and Extra Heavy duty.
3. Sewer Pipe Fitting and Riser to Cleanout: ASTM A 74, Service class, cast-iron soil pipe and fittings.

2.5 MANHOLES

A. Standard Precast Concrete Manholes: ASTM C 478, precast, reinforced concrete, of depth indicated, with provision for sealant joints in accordance with PADOT 408 Standards.

1. Diameter: 48 inches minimum, unless otherwise indicated.
2. Base Section: 6-inch minimum thickness for floor slab and 4-inch minimum thickness for walls and base riser section, and having separate base slab or base section with integral floor.
3. Riser Sections: 4-inch minimum thickness, and of length to provide depth indicated.
4. Top Section: Eccentric-cone type, unless concentric-cone or flat-slab-top type is indicated. Top of cone of size that matches grade rings.
5. Joint Sealant: ASTM C 990, bitumen or butyl rubber.
6. Resilient Pipe Connectors: ASTM C 923, cast or fitted into manhole walls, for each pipe connection.
7. Steps: ASTM A 615/A 615M, deformed, 1/2-inch steel reinforcing rods encased in ASTM D 4101, PP, wide enough to allow worker to place both feet on 1 step and designed to prevent lateral slippage off of step. Cast or anchor steps into sidewalls at 12-to 16-inch intervals. Omit steps if total depth from floor of manhole to finished grade is less than 60 inches.
8. Adjusting Rings: Interlocking rings with level or sloped edge in thickness and diameter matching manhole frame and cover. Include sealant recommended by ring manufacturer.

9. Grade Rings: Reinforced-concrete rings, 6- to 9-inch total thickness, to match diameter of manhole frame and cover.

10. Manhole Frames and Covers: Ferrous; 30-inch ID by 7- to 9-inch riser with 4-inch minimum flange and 32-inch diameter cover. Include indented top design with lettering cast into cover, using wording equivalent to "SANITARY SEWER."

 a. Material: ASTM A 536, Grade 60-40-18 ductile iron, unless otherwise indicated.

2.6 CONCRETE

A. General: Cast-in-place concrete according to ACI 318/318R, ACI 350R, and the following:

1. Cement: ASTM C 150, Type II.

B. Portland Cement Design Mix: 4000 psi minimum, with 0.45 maximum water/cementitious materials ratio.

2. Reinforcement Bars: ASTM A 615/A 615M, Grade 60, deformed steel.

C. Manhole Channels: Factory or field formed from concrete. Portland cement design mix, 4000 psi minimum, with 0.45 maximum water/cementitious materials ratio. Include channels in manholes.

1. Channels: Concrete invert, formed to same width as connected piping, with height of vertical sides to three-fourths of pipe diameter. Form curved channels with smooth, uniform radius and slope.

 a. Invert Slope: 1 percent through manhole.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

A. Pipe couplings and fittings with pressure ratings at least equal to piping rating may be used unless otherwise indicated.

B. Gravity-Flow, Nonpressure Sewer Piping: Use the following pipe materials:

1. PVC sewer pipe and fittings, gaskets, and gasketed joints.
3.2 PIPING INSTALLATION

A. General Locations and Arrangements: Drawing plans and details indicate general location and arrangement of underground sanitary sewerage piping. Location and arrangement of piping layout take design considerations into account. Install piping as indicated, to extent practical. Where specific installation is not indicated, follow piping manufacturer's written instructions.

B. Install piping beginning at low point, true to grades and alignment indicated with unbroken continuity of invert. Place bell ends of piping facing upstream. Install gaskets, seals, sleeves, and couplings according to manufacturer's written instructions for using lubricants, cements, and other installation requirements.

C. Install manholes for changes in direction, unless fittings are indicated. Use fittings for branch connections, unless direct tap into existing sewer is indicated.

D. Install gravity-flow, nonpressure, drainage piping according to the following:
 1. Install piping pitched down in direction of flow, at minimum slope of 1 percent, unless otherwise indicated.
 2. Install PVC sewer piping according to ASTM D 2321 and ASTM F 1668.

E. Clear interior of piping and manholes of dirt and superfluous material as work progresses. Maintain swab or drag in piping, and pull past each joint as it is completed. Place plug in end of incomplete piping at end of day and when work stops.

3.3 PIPE JOINT CONSTRUCTION

A. Basic piping joint construction is specified in Division 22 Section "Common Work Results for Plumbing." Where specific joint construction is not indicated, follow piping manufacturer's written instructions.

B. Join gravity-flow, nonpressure, drainage piping according to the following:
 1. Join PVC sewer piping according to ASTM D 2321 and ASTM D 3034 for elastomeric-gasket joints.
 2. Join dissimilar pipe materials with nonpressure-type, flexible couplings.

3.4 MANHOLE INSTALLATION

A. General: Install manholes complete with appurtenances and accessories indicated.

B. Install precast concrete manhole sections with sealants according to ASTM C 891.

C. Form continuous concrete channels and benches between inlets and outlet.

D. Set tops of frames and covers flush with finished surface of manholes that occur in pavements. Set tops 3 inches above finished surface elsewhere, unless otherwise indicated.
3.5 CLEANOUT INSTALLATION

A. Install cleanouts and riser extensions from sewer pipes to cleanouts at grade. Use cast-iron soil pipe fittings in sewer pipes at branches for cleanouts and cast-iron soil pipe for riser extensions to cleanouts. Install piping so cleanouts open in direction of flow in sewer pipe.
 1. Use heavy-duty, top-loading classification cleanouts in vehicle and pedestrian traffic service areas.
 2. Use extra-heavy-duty, top-loading classification cleanouts in roads.

B. Set cleanout frames and covers in earth in cast-in-place-concrete block, 18 by 18 by 12 inches deep. Set with tops 1 inch above surrounding grade.

C. Set cleanout frames and covers in concrete pavement with tops flush with pavement surface.

3.6 CONNECTIONS

A. Make connections to existing piping and underground manholes.
 1. Use commercially manufactured wye fittings for piping branch connections. Remove section of existing pipe; install wye fitting into existing piping; and encase entire wye fitting, plus 6-inch overlap, with not less than 6 inches of concrete with 28-day compressive strength of 3000 psi.

3.7 FIELD QUALITY CONTROL

A. Inspect interior of piping to determine whether line displacement or other damage has occurred. Inspect after approximately 24 inches of backfill is in place, and again at completion of Project.
 1. Submit separate report for each system inspection.
 2. Defects requiring correction include the following:
 a. Alignment: Less than full diameter of inside of pipe is visible between structures.
 b. Deflection: Flexible piping with deflection that prevents passage of ball or cylinder of size not less than 92.5 percent of piping diameter.
 c. Crushed, broken, cracked, or otherwise damaged piping.
 d. Infiltration: Water leakage into piping.
 e. Exfiltration: Water leakage from or around piping.
 3. Replace defective piping using new materials, and repeat inspections until defects are within allowances specified.
 4. Reinspect and repeat procedure until results are satisfactory.

B. Test new piping systems, and parts of existing systems that have been altered, extended, or repaired, for leaks and defects.
 1. Do not enclose, cover, or put into service before inspection and approval.
 2. Test completed piping systems according to requirements of authorities having jurisdiction.
3. Schedule tests and inspections by authorities having jurisdiction with at least 24 hours' advance notice.
4. Submit separate report for each test.
5. Air Tests: Test sanitary sewerage according to requirements of authorities having jurisdiction, UNI-B-6, and the following:
 a. Test plastic gravity sewer piping according to ASTM F 1417.

C. Leaks and loss in test pressure constitute defects that must be repaired.

D. Replace leaking piping using new materials, and repeat testing until leakage is within allowances specified.

END OF SECTION 221313